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suMMARY

The measured force characteristics and surface-pressure distributions
at angles of attack from 0° to 6° are presented for a series of bodies
having elliptical cross sections. (The axial distributions of cross-
sectional area for these bodies were identical and equal to that for a
parabolic-arc body of revolution having a fineness ratio of 12.) Pres-
sure distributions for the surrounding flow fields are also presented for
the various bodies at zero angle of attack. The Mach nuniberrange varied
from 0.8 to 1.2, and the Reynolds nuniber,based on the theoretical length
of the model from nose to point of closure, was approximately 24f106.

.
In

further
order to provide
understanding of

INTRODUCTION

experimental data which may be used in the
the tramsonic-flow phenomena for simple bodies,

a related series of experimental investigations has been initiated in
the Ames 14-foot transonic wind tunnel.

In previous investigations (refs. 1 and 2), pressure distributions
were obtained on the body surface and in surrounding flow fields for

.-

parabcdic-arc bodies of revolution having fineness ratios of 10, 12,
and 14, and for bodies of revolution having various axial locations of
maximum cross-sectional area. In the present report, pressure distribu-
tions and force data are presented for a series of bodies having ellipt-
ical cross sections with ratios of major-to-minor axes of 1.0, 1.5, 2.0,
and 7.0. All the bodies had identical axial distributions of cross-
section area (equal
a fineness ratio of

-i
--r CL

drag

lift

to that for a parabolic-arc body of revolution having
.—

12).
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theoretical body length

truncated body length

free-stream Mach number

local static pressure
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of revolution, length
maximum diameter

from nose to point of closure

free-stream static pressure

free-stream dynamic pressure

body radius

Reynolds number based on body length Z

body cross-sectionalarea normalizedby dividing by body
fi2

lemgth squared, ~

body wetted area

.
—

*_

angle of attack, bodies pitched in plane of minor axis of
elliptical cross section

cylindrical coordinate system (see sketch (a)) where ~
and ‘q are streamwise and radial distances normalized
by dividing by body length Z

body radius normalizedby dividing by the body length t

ratio of major-to-tinor axis of body cross section (see
sketch (a))

center-of-pressurelocation, ~Cp =o.5-~

first and second derivatives with respect to the normalized
streamwise coordinate

.&
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Subscripts

1,2

av

b

f

max

~jor and minor axes of the elliptical cross sections
(see sketch (a))

average

body base

friction

APPARATUS AND MODELS

Tunnel

This investigation was conducted in the Ames 14-foot transonic tind
tunnel, which is a closed-return tunnel equipped with a perforated test.
section permitting continuous operation from subsonic to low supersonic
speeds (fig. 1). Each wall of the test section contains 16 longitudinal

“ slots with each slot containing a corrugated strip as indicated in fig-
ure 1. The ratio of accumulated slot widths (slot width minus the accu-
mulated widths of the corrugated insets) to tunnel perimeter in a plane
normal to the air stream is equal to 0.054 (usually referred to as the
porosity factor). Figure 2 shows a model mounted in the tunnel test
section.

Models

The four models considered in this investigation constituted a series
of progressively flattened bodtes having elliptical cross sections. The
ratios of major-to-minor axes included in the series were A = 1.0, 1.5,
2.0, and3.O (see fig. 3). All bodies had identical axial distributions
of cross-sectional area. The body of revolution (A = 1.0) had a fineness
ratio of 12. The normalized zadii of the A = 1.0 body (parabolic arc)
are given by the equation

(1)
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where the coordinate system (dimen-
sionless with respect to the body P +
length) is illustrated in sketch (a).

The normalized radii of the
flattened bodies are given by

6 X(g)
H(g) = (2)

os2G+A2sin20

~ where & is the normalized radius
of a body of revolution having iden-
tical cross-sectionalarea. In the

~ present case, all the bodies have
the same axial distribution of cross-
sectional area and hence ~ is equal
to the riormalizedradius of the
parabolic-arc body of revolution

AsHi/Ha (eq. (l)).
—

Sketch (a) The bodies were truncated at
~b = 0.854 (fig. 3) so that the base

areas were equal to 25 percent of the maximum cross-section area. The
geometric characteristicsof the models are tabulated below. Additional
normalized body parameters are shown in figure 4.

A %mx) ‘2mx J lb, 1.2

in. in. in. T

1.0 3.00 3.00 61.45 6.04
1.5 3.@ 2.45 61.45 5.90
2.0 4.24 2.12 61.45 5.7’2
3.0 5.19 1.73 61.45 4. go

.

INSTRUMENTATION

The aerodynamic forces
balance enclosed within the

and moments were measured by a strain-gage
model. Multiple-tube manometers using tetra-

bromoethane (specific gravity = 2.96) were photographed to record the _, ...
pressure data.

Body surface-pressure data were obtained by the use of nine longitu-
dinal rows of static-pressure orifices located at meridian angles of
e 00, *50, f150, *40°, and f90°. Additional orifices were located at
th~model base and in the cavity between the body and sting support in >&
order to measure base pressures. .
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With the models at zero angle of attack, local
measured in the flow field surrounitingthe model by
tube shown in figure 5. The survey tube was 1 inch

5

static pressures were
means of the survey

in Mameter and con-
tained static-pr~ssure orifices lo>ated 90° with respect to a vertical
plane passing through the longitudinal axes of the models and survey tube.
The models were rotated on the sting so that pressure measurements could
be made in lanes corresponding to constant meritian angles of G = 0°,

~40°, andx .

TESTS AND PROCEDURES

The force characteristics and body surface-pressure distribution were
obtained at model angles of attack equal to 0°, 2°, 4°, and 6°. Pressures

in the external flow fields surmounting the models were measured only at
zero model angle of attack. The tests were conducted through a Mach num-
ber range of 0.80 to 1.20, with a corresponding Reyuolds number variation
of 23.4XL06 to 24.6x106 (based on model len@h), see figure 6. To promote
transition near the model nose, No. 60 Carborundum grit was cemented over
the first inch of the model.

The experimental data were not corrected for tunnel-wall interference
effects. Considerations of the testing procedure and the data-reduction
forces indicate that the free-stream Mach numbers are repeatable within
approximately ~.002, the angle of attack is accurate within approximately
tO.lOO, and the pressure-coefficient data are repeatable within approxi-
mately M.005. An additional error in pressure coefficient is due to
transverse flow, inducedby body curvature, at the survey tube. This error
is negligible except for.the survey-tube paition nearest the body. How-
ever, the absolute value of this error is believed to be always less than
0.005.

The force and pressure data were obtained simultaneously and reduced
to standard coefficient form. The theoretical body length 2 is used in
defining the force and moment coefficients,

‘%=

c!~=

‘JIn’

drag

3
lift

P

moment about ~=o.5

The drag coefficient is defined by

CD = CD
Sp

%Z3

the following

+ C%p + cDf

relationship:
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where

Df
CDf = ~

The pressure drag of the body, CDSP + C~p, was calculated (at zero

angle of attack) by means of numerical integrations using measured pres-
sure distributions. In the present tests it was found that the pressure
coefficient was essentially constant over the base surface so that an
average base pressure coefficient could be used; that is,

.—

The skin-friction coefficient, ~f, was estimated
of reference 3.

DATA PRESENTATION

The data presented in this report consist of

by the use of the charts

.

body surface pressures
and longitudi& forces at angles ~f attack from 0° t~ 6° and p-mssure
distributions in the surrounding flow fields for the models at zero angle

.&—

of attack.

Pressure Data

The measured pressure distributions for the models at zero angle of
attack are presented in figures 7 to 10 and the measured surface-pressure
distributions at positive angles of attack are presented in figures 11
to 14. The survey tube was used to obtain pressure distributions in planes
correspondingto meridian angles of 0°, 40°, and 90°. (The data have not
been faired in regions where shock waves are believed to exist.) The var-
iations of body-pressure coefficient with meridian angles E) for various
axial stations are presented in figures 15 and
values of A equal to 2 and 3, respectively.

The basic lift,
bodies having ratios

Force Data

drag, and pitching-moment
of major-to-minor axes, A

16 for the bodies having

.

“*

data for the series of
of 1.0, 1.5, 2.0, and 3.0-, ‘.--
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are presented in figures 17 to 20. The drag coefficients have been
adjusted to represent free-stream static pressure at the base of each
model. (The average base drag coefficients, ~p, are tabulated in
table I.) Cross plots of longitudinal force characteristics as a ~c-
tion of Mach number and axis ratio A are presented in figures 21,to 29.

The variationsoflift coefficient with Mach number for constant angle
of attack are presented in figure 21. The effects of changes~in the param-
eter h at a Mach number of unity are summarized in figure 22.

The variationsofdrag coefficient with Mach number for constant angles
of attack are presented in figure 23, and the drag coefficient variations
with A are summarized in figure 24 for three representative Mach numbers.
Cross plots of the lift-drag ratio as a function of Mach nuniberand A
are presented in figures 2-5and 26. In figure 27, the drag coefficients
obtained from force measurements are compared with those calculated from
pressure-distributionmeasurements at zero angle of attack. In addition,
the estimated friction-drag coefficients (ref. 3) and measured base drag
coefficients are presented.

kmations of the center of pressure Ecp (with respect to model nose)
are presented in figure 30 for angles of attack from 2° to 6°.

Ames Aeronautical Laboratory.
National Adtisory Committee for Aeronautics

Moffett Field, Calif., June 17, 1958
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TABLE I.- TABULATION OF BASE DRAG COEFFICIENT

& & ~ =1.0 A=l.5 ?! = 2.0 A = 3.0

0.90 0 -0.000060 -0.000089 -0.000077 -O.00CQ08
2 -.000060 -.000095 -.000079 -.000005

-.000053 -.000092 -.000073 -.000002
2 -.000050 -.000079 -.000076 .Oooml

● 975 0 -. 000K% -.000127 -.000109 -.000053
2 -.000094 -.000115 -.000095 -. ooc023

-.000079 -.000115 -.000095 -.000023
: -.000070 -.000124 -.000098 -.000013

1.00 0 -.000106 -.000141 -.000121 -.0000W
2 -.000109 -.000138 -.000121 -.000051

-.000109 -.000135 -.000118 -.000051
2 -.000103 -.000135 -.000124 -.000030

1.025 0 -.000126 -.000152 -.000149 -.000004
2 -.000112 -.000178 -.000140 0

-.000097 -.000146 -.000126 -. CQooll
2 -.000086 -.000132 -.000109 -.000014

1.10 0 -.000003 -.000022 -.000024 .000049
2 .Ooood -.000024 -.000005 .000048

.000011 -. oocQ08 -.000003 .axlo74
2 .000019 .000006 .000022 .000085

1.20 0 .000045 .000008 .000034 .000094
2 . ooooy3 .000014 .000032 .000089

. 0000% .000016 . oooo~ .000105
: . Ooom .000047 .000040 .000123

●
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Figure 3.- Geometrical details of the models.



.06

.05

.04

H

.03

,02

.01

0

0 .1 ,2 .3 .4 .5 .6 .7 .8 .9 1.0

t

(a) Variation of H with g; h = 1.0.

Figure 4.- Model geometry.



.08

.07

.06

.05

.04

H

.03

.02

.01

0

0 .1 .2 .3 .4 .5 .6 .7

(

(b)?%rlationof HwLth E.;A=l.5.

Figure k.- Con%tnueti.

,8 .9 Lo



.08

.07

,06

.05

.04

H

.03

.02

,01

0

o .1 .2 .3 .4 .5 .6 .7 .8 .9 I .0

[

(c) Variation of Htith ~; A=2.O.

Figure k.- Contimued.

4’



-.

.08

.07

.06

.05

H

,04

.03

.02

.01

0

1! !! !! !!!ll!!!l! 1111

0 .1 ,2 .3 ,4 .5 .6 .7 .8 ,9 1.0

f

(d) Variald.orlof Hwith E; h = 3.o.

Figure 4.- Contlm.d.



. —-

.3

.2

.1

H’

0

-.1

-.2

-.3

0 .1 .2 .3 .4 .5 .6 .7 .13 .9 LO

(

(e) Vadationof Et with ~; X=l.O.

llbqu-e J+.- Continued.

k’ . *

I



.3

.2

,1

E’

o

-J

-.2

-.3

I

\

— 15”

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 LO

t

(l’)Variation of HI with ~; A = 1.5.

Figure 4.- Continued.

is
!2



.3

.2

.1

H’

o

-.1

-.2

\ .

-90”

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 I.o

t

k) vafia~ionof H1 with E; A=2.o.

RLgure 4.- Cmtinued.

P
co

*



.3

.2

.1

E’

o

-.1

:2

-.3

I

19.1) “

-

~

-90”

0 J ,2 .3 .4 .5 .6 .7 .8 .9 1.0

[

(h) Vartationof Hi with ~; A=3.O.

Figure k.- Continued.



iv
o

.006

.005

.004

s

,003

.002

.00 I

o

.

/ ‘
/

L

/

/

/ ‘

o .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

(

(i) Variation of Stith E; h =1.0) 1.5, 2.0, UId 3.0.

Figure 4.- Continued.

t“
. t“



.03

.02

,01

s’

o

-.01

-,02

-.03

/ y

/ — \

/ ‘
\

.

\ /. \ /
/ ‘“\_ / r

o .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

t

(J) Variatd.onof S’ with g.

Figure 4.- concluaea.
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Figure 5.- Schemtic drawings of the model and survey tube.
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A 1 4
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1-”
~=0.083

~mox /- ~=0.167
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p’ ~~ q=o.334
\

I
81 in. F

.

Note:
dmax refers to body of revolution (A= 1.0)

F

r Tunnel floor
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(b) Relative positions of the survey tube with respect to the model.

Figure 5.- Concluded.
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